The ethics of algorithms: key problems and solutions

Research on the ethics of algorithms has grown substantially over the past decade. This article builds on a review of the ethics of algorithms published in 2016 … to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative concerns, and to offer actionable guidance for the governance of the design, development and deployment of algorithms.

A new paper written by Andreas Tsamados, Nikita Aggarwal, myself, Jessica Morley, Huw Roberts, Mariarosaria Taddeo and Luciano Floridi has recently been published in AI and Society.

A Unified Framework of Five Principles for AI in Society

A new short paper by Luciano Floridi and I has been published, open access, in the inaugural issue of the Harvard Data Science Review. 2000px-Black_pencil.svg

Abstract:

Artificial Intelligence (AI) is already having a major impact on society. As a result, many organizations have launched a wide range of initiatives to establish ethical principles for the adoption of socially beneficial AI. Unfortunately, the sheer volume of proposed principles threatens to overwhelm and confuse. How might this problem of ‘principle proliferation’ be solved? In this paper, we report the results of a fine-grained analysis of several of the highest-profile sets of ethical principles for AI. We assess whether these principles converge upon a set of agreed-upon principles, or diverge, with significant disagreement over what constitutes ‘ethical AI.’ Our analysis finds a high degree of overlap among the sets of principles we analyze. We then identify an overarching framework consisting of five core principlesfor ethical AI. Four of them are core principles commonly used in bioethics: beneficence, non-maleficence, autonomy, and justice.On the basis of our comparative analysis, we argue that a new principle is needed in addition: explicability, understood as incorporating both the epistemological sense of intelligibility (as an answer to the question ‘how does it work?’) and in the ethical sense of accountability (as an answer to the question: ‘who is responsible for the way it works?’). In the ensuing discussion, we note the limitations and assess the implications of this ethical framework for future efforts to create laws, rules, technical standards, and best practices for ethical AI in a wide range of contexts.